UOL - O melhor conteúdo

Ponto médio de um segmento de reta

O ponto médio de um segmento de reta é o ponto que separa o segmento em duas partes com medidas iguais.

O ponto médio separa o segmento de reta em duas partes com medidas iguais
O ponto médio separa o segmento de reta em duas partes com medidas iguais
Crédito da Imagem: Shutterstock
Imprimir
A+
A-
Escutar texto
Compartilhar
Facebook
X
WhatsApp
Play
Ouça o texto abaixo!
1x
PUBLICIDADE

O segmento de reta possui inúmeros pontos alinhados, mas somente um deles divide o segmento em duas partes iguais. A identificação e a determinação do ponto médio de um segmento de reta serão demonstrados com base na ilustração a seguir:

O segmento de reta AB possui um ponto médio (M) com as seguintes coordenadas (xM, yM). Observe que os triângulos AMN e ABP são semelhantes e possuem três ângulos iguais. Dessa forma, podemos aplicar a seguinte relação entre os segmentos que formam os triângulos. Veja:

AM = AN
AB    AP

Podemos concluir que AB = 2 * (AM), considerando que M é o ponto médio do segmento AB.

 AM = AN
2AM   AP

AN = 1
AP    2

AP = 2AN

xP – xA = 2*(xM – xA)
xB – xA = 2*(xM – xA)
xB – xA = 2xM – 2xA
2xM = xB – xA + 2xA
2xM = xA + xB
xM = (xA + xB)/2

Por meio de um método análogo, conseguimos demonstrar que yM = (yA + yB )/2.

Portanto, considerando M o ponto médio do segmento AB, temos a seguinte expressão matemática para determinar as coordenadas do ponto médio de qualquer segmento no plano cartesiano:

Não pare agora... Tem mais depois da publicidade ;)

Percebemos que o cálculo da abscissa xM é a média aritmética entre as abscissas dos pontos A e B. Assim, o cálculo da ordenada yM é a média aritmética entre as ordenadas dos pontos A e B.

Exemplos

→ Dadas as coordenadas dos pontos A(4,6) e B(8,10) pertencentes ao segmento AB, determine as coordenadas do ponto médio desse segmento.

XA = 4
yA = 6
xB = 8
yB = 10

xM = (xA + xB) / 2
xM = (4 + 8) / 2
xM = 12/2
xM = 6

yM = (yA + yB) / 2
yM = (6 + 10) / 2
yM = 16 / 2
yM = 8

As coordenadas do ponto médio do segmento AB são xM (6, 8).

Dados os pontos P(5,1) e Q(–2,–9), determine as coordenadas do ponto médio do segmento PQ.

XM = [5 + (–2)] / 2
xM = (5 – 2) / 2
xM = 3/2

yM = [1 + (–9)] / 2
yM = (1 – 9) / 2
yM = –8/2
yM = –4

Portanto, M(3/2, –4) é o ponto médio do segmento PQ.

 

Por Marcos Noé
Graduado em Matemática

Escritor do artigo
Escrito por: Marcos Noé Pedro da Silva Escritor oficial Brasil Escola

Gostaria de fazer a referência deste texto em um trabalho escolar ou acadêmico? Veja:

SILVA, Marcos Noé Pedro da. "Ponto médio de um segmento de reta"; Brasil Escola. Disponível em: https://brasilescola.uol.com.br/matematica/ponto-medio-um-segmento-reta.htm. Acesso em 07 de abril de 2025.

De estudante para estudante


Videoaulas


Lista de exercícios


Exercício 1

Dado um segmento de reta AB cujas extremidades estão nas coordenadas A = (1, 3) e B = (– 5, – 6), quais são as coordenadas do seu ponto médio?

a) M = (– 1,5; – 2)

b) M = (– 2; – 1,5)

c) M = (2; 1,5)

d) M = (1,5; 2)

e) M = (2,5; – 1)

Exercício 2

Dadas as coordenadas do ponto médio M = (2, 5), quais são as coordenadas da extremidade A do segmento de reta que o contém, sabendo que a outra extremidade está no ponto B = (5, 5)?

a) M = (– 1, 5)

b) M = (– 1, 1)

c) M = (1, 5)

d) M = (1, – 5)

e) M = (5, – 1)

Exercício 3

Um segmento de reta tem uma de suas extremidades no ponto A = (a, 2a) e seu ponto médio no ponto M = (6a, 3a). Quais são as coordenadas da outra extremidade desse segmento de reta em função de a?

a) (11, 4)

b) (4, 11)

c) (11a, 4a)

d) (4a, 11a,)

e) (a, a)

Exercício 4

Os segmentos de reta AB e CD cruzam-se em seus pontos médios. Sabendo que esses segmentos determinam um paralelepípedo e que A = (– 3, – 1), B = (4, 2) e C = (– 1, 2), quais são as coordenadas do ponto D?

a) D = (1, – 2)

b) D = (– 1, 2)

c) D = (0,5; 0,5)

d) D = (2, – 2)

e) D = (2, – 1)